If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14y^2+43y-21=0
a = 14; b = 43; c = -21;
Δ = b2-4ac
Δ = 432-4·14·(-21)
Δ = 3025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3025}=55$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(43)-55}{2*14}=\frac{-98}{28} =-3+1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(43)+55}{2*14}=\frac{12}{28} =3/7 $
| 52.7834=3.14r^2 | | 10x-13+17x-41=180 | | 10x-13=17x-14 | | 100000(x^2)+1.5x-1.5=0 | | 9-6x=3× | | 2x+2=x=5 | | x^2(4)-4x=286 | | 4(2x-6)=11x+4 | | 3.250.5x+1.3+0.83x=5.9167 | | (12-y)+y*9=108 | | a*6=24*9 | | 11+16x=3+(6x+(-6))+x | | -6(4+x)=60 | | 2b+8-5b+3=-3+8b-5 | | -5p-8p=-6p-7p | | 7(6x-14)=43x | | -8(-4x-4)=-192 | | -9+2x-2=1 | | -240=-5(7x-1) | | g+3=-9 | | 5t-4=25 | | -5x+5(3x-1)=-85 | | 16x-13=3x-7 | | 7p=15-4p | | 8(1+6x)=392 | | 5(t-4)=25 | | 6=2(x-14) | | -16-x=5 | | 3(-6x-4)=96 | | 2x+12+30=#x+6 | | 2/5n+5=1/4 | | (3/8x)=4 |